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Summary
This review summarizes results from in vitro and in vivo studies which provide evidence that 
human dental pulp stem cells (hDPSCs) might be a novel treatment strategy for nervous sys-
tem injuries and neurodegenerative diseases because of their high potential for neurogenic  
differentiation and secretion of neuron-related trophic factors. It is also worth underlining that 
hDPSCs are neural crest-derived cells that possess biological properties of mesenchymal stem 
cells (MSCs). Induced hDPSCs have a high ability to differentiate into neuron-like cells, which 
show functional activity. hDPSCs express immunomodulatory factors that enhance regenera-
tion and repair of nerve injury. These specific features of undifferentiated and differentiated 
hDPSCs make these cells promising for the therapy of neurodegenerative diseases, such as 
Alzheimer’s, Parkinson’s diseases, stroke, spinal cord injury as well as peripheral nerve injury. 
Recently, investigators propose that the tissue engineering technology, including scaffold, stem 
cells and growth factor, should provide a new strategy for spinal cord and peripheral nerve 
injury treatment. hDPSCs should be considered as a good choice for peripheral nerve injury 
therapy, because they have better potential to differentiate into neural and glial cells than 
stem cells coming from other sources through the expression of neuronal makers and wide 
range of neurotropic factors secretion. Unique properties of hDPSCs, such as high prolifera-
tion rate, trophic factors expression and stronger neuroprotective effects, indicate that these 
stem cells may be beneficial in neural disease therapy.
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stem cells [39]. Although the above various mesenchy-
mal stem cell populations exist in teeth, these groups 
are similar to one another and they also demonstrate 
specific characteristics relevant to each population  
[5, 39]. A comparison of biological features of dental 
stem cells coming up from different dentin tissues is 
presented in Table 1.

Due to the evidence proving that – in contrast to the 
other dental tissues – dental pulp is significantly richer 
in stem cells, hDPSCs have become “a promised land” for 
future clinical application [5, 7, 34, 62]. It has been found 
that hDPSCs have some features resembling MSCs char-
acteristics, including fibroblast morphology with selec-
tive adherence to solid surfaces and formation colonies 
in vitro [5, 39, 62]. hDPSCs are easily accessible and pos-
sess higher proliferation capacity than ordinary MSCs 
[39, 62]. A considerable amount of data has shown that 
hDPSCs are characterized by their negative expres-
sion of hematopoietic antigens (e.g., CD45, CD34, CD14, 
CD19, HLA-DR) and positive of mesenchymal stem cells 
markers (e.g., CD105, CD90, CD44, CD29, CD73, STRO-1)  
[5, 7, 39, 40, 62]. Moreover, some of the pluripotent 
stem cell markers, such as Oct4, Nanog, Sox-2, SSEA 
and c-Myc have been expressed in hDPSCs [5, 62]. Apart 
from stemness markers, hDPSCs also express bone mark-
ers such as dentin sialophosphoprotein (DSPP), dentin 
matrix protein-1 (DMP-1), osterix (Osx), osteocalcin 
(OCN), osteopontin (OPN) alkaline phosphates (ALP) and 
type I collagen [5, 7, 64]. Additionally, hDPSCs express 
neural markers such as β-III tubulin, microtubule-asso-
ciated protein-2 (MAP-2), and glial fibrillary acidic pro-
tein (GFAP) [34, 62]. Moreover, dental pulp stem cells 
secrete many factors, such as immunomodulatory, 
anti-inflammatory, anti-apoptotic, anti-angiogenic 
regulatory and neurotrophic [5, 34, 62]. Biomarkers 
and factors expressed by hDPSCs are shown in Table 2.  
In fact, because hDPSCs populations are heterogene-
ous and consist of mixed subpopulations with different  

INTRODUCTION 

Stem cell-based therapies have been intensively studied 
as a possible treatment of central nerve system disor-
ders, i.e. Alzheimer’s disease (AD), Parkinson’s diseases 
(PD), stroke, spinal cord injury (SCI), and peripheral 
nerve injury [34, 58]. Mesenchymal stem cells (MSCs) 
coming from different sources were applied in the 
repair of nerve damage and regeneration of neurode-
generative diseases [62]. MSCs may be isolated from var-
ious human tissues including: skin, bone marrow, brain, 
adipose tissue and dental pulp of children and adults 
[61]. MSCs derived from bone marrow (BM-MSCs) are 
the most widely studied in vitro and in vivo experiments 
[60, 61]. However, pain and morbidity accompanying 
MSCs obtained from bone marrow forced clinicians and 
scientists to search for alternative donating organs or 
compartments as a source of MSCs [58]. In this sense, 
dental-related tissues are currently being proposed 
as one of the most promising non-invasive sources of 
human stem cells [34, 58]. Currently, there is growing 
evidence that dental stem cells (DSCs) have many sim-
ilarities to BM-MSCs and evidently prevail over costly 
and invasive techniques required for other adult stem 
cells isolation [5, 34].

Dental pulp is a soft connective tissue of the tooth, 
united with the mineralized dentin and containing  
a heterogeneous population consisting of fibroblasts, 
endothelial cells, neurons, odonto-osteoprogenitors 
and inflammatory cells [5, 34, 39]. There are six types 
of stem/progenitor cells determined in dental-related 
tissues: dental pulp stem cells (DPSCs), stem cells from 
human exfoliated deciduous teeth (SHED), stem cells 
from apical papilla (SCAP), dental follicle stem/pro-
genitor cells (DFSCs), periodontal ligament stem cells 
(PDLSCs) and gingiva stem cells (GMSCs); DPSCs, SHED 
and SCAP are referred to as dental pulp-related stem 
cells, whilst PDLSCs and DFSCs – as periodontal-related 
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derived neurotrophic factor (GDNF), brain-derived neu-
rotrophic factor (BDNF), and nerve growth factor (NGF) 
[25, 28, 29, 34]. Therefore, these dental stem cells seem to 
be good candidates used in neural diseases therapy and 
nerves regeneration [34, 58, 62].

EXPERIMENTAL STUDIES ON HDPSCS NEURONAL 
DIFFERENTIATION

hDPSCs, which arise from the cranial neural crest and 
express a high level of neurotrophic markers, seem to be 
an attractive subpopulation of stem cells, which in the 
appropriate environment differentiate towards func-
tional neurons [25, 34, 58]. Several protocols have been 
developed to differentiate hDPSCs into dopaminergic 
neural cells [25, 45, 58]. These methods involve differ-
ent growth factors and various supplements depending 
on phases of hDPSCs differentiation [45]. The growth 
factors include the following: epidermal growth factor 
(EGF), basic fibroblast growth factor (bFGF), NGF, BDNF 
and GDNF [9, 18, 20, 26, 28, 29, 45, 65]. Additionally, neu-
rogenic maturation of hDPSCs is achieved by the addi-
tion of sonic hedgehog (Shh), neurotrophin-3 (NT-3), 
heparin, retinoic acid, froskolin and culture supplement, 
such as B27 [18, 20, 23, 25, 26, 43]. 

The first study conducting hDPSCs differentiation into 
functional neurons using protocol based on fibroblast 
growth factors or epidermal growth factor signaling 
pathway was performed by Arthur et al. [6]. In another 

phenotypic and biological properties, and markers pro-
files, these stem cells have been frequently used in the 
regeneration of many tissues including neural tissue  
[3, 5, 34, 39, 62]. Experimental studies revealed that  
hDPSCs can be differentiated by modulation with growth 
factors, transcriptional factors, extracellular matrix pro-
teins and receptors into mesodermal and non-meso-
dermal tissue cells, including osteoblasts, odontoblasts, 
adipocytes, chondrocytes, cardiomyocytes, neuron cells, 
corneal epithelial cells, hepatocytes and melanocytes 
[5, 34, 45, 62, 64]. According to International Society for 
Cellular Therapy (ISCT), three criteria, i.e. adherence to 
plastic, specific surface antigen, trilineage mesenchymal 
differentiation, should be used to define MSC subpopu-
lation [13]. In our experimental studies, identification 
and characterization of hDPSCs was confirmed by stem 
cells markers expression, adherence to plastic dishes and 
differentiation potential toward osteoblasts and chon-
drocytes. The status of hDPSCs differentiated into osteo-
blasts and chondrocytes was confirmed by the expression 
of specific proteins, such as osteopontin, osteocalcin for 
osteoblast andand collagen, aggrecan for chndrocytes is 
presented in fig. 1F–H. As is widely mentioned in litera-
ture, considering hDPSCs use in therapy two their biologi-
cal features are essential to obtain mature differentiated 
cells. First of all, high hDPSCs differential potential, sec-
ondly, differentiated cells biomarkers expression [25, 34, 
40, 45, 58]. Recent data indicates that hDPSCs possess high 
neurogenic potential and express a high level of neuronal 
markers and neurotrophic factors, such as glial cell line-

Table 1. Biological features of dental stem cells coming up from different dentin tissues [34, 35, 58, 62]

DPSCs SHED PDLSCs DFPCs SCAPs GMSCs

Location Permanent tooth 
pulp

Exfoliated decidous 
tooth pulp

Periodontal 
ligament

Dental follicle of 
developing tooth

Apical papilia of 
developing root

Gingival tissue

Immunoreactivity

Positive biomarkers

STRO-1, CD10,
CD13, CD29,
CD44, CD59,
CD73, CD90,
CD105, CD106, 
CD117, CD146

STRO-1, CD13, CD29, 
CD44, CD73, CD90, 
CD105, CD106, 
CD146, CD166

STRO-1, CD10,
CD13, CD26,
CD29, CD44,
CD59, CD73,
CD90, CD105,
CD106, CD166

STRO-1, CD10,
CD13, CD29,
CD44, CD59,
CD73, CD90,
CD105

STRO-1, CD13,
CD29, CD44,
CD73, CD90,
CD105, CD106,
CD146, CD166

STRO-1, CD13, CD29, 
CD44, CD73, CD90, 
CD105, CD106, 
CD146, CD166,

Negative 
biomarkers

CD14, CD19,
CD24, CD34,
CD45, 
HLA-DR

CD14, CD18,
CD19, CD24,
CD34, CD45

CD14, CD34,
CD40, CD45,
CD80, CD86,
HLA-DR

CD34, CD45,
HLA-DR

CD18, CD34,
CD45, CD150

CD34, CD45,
HLA-DR

Multipotentialy odontoblast, 
osteoblast, 
chondrocyte, 
myocyte, corneal 
epithelial cells, 
melanoma cells, iPS

odontoblast, 
osteoblast, 
chondrocyte, 
myocyte, neurocyte, 
adipocyte, iPS

odontoblast, 
osteoblast, 
chondrocyte, 
neurocyte, 
cementoblast

odontoblast, 
osteoblast, 
neurocyte,

odontoblast, 
osteoblast, 
neurocyte, 
adipocyte, iPS

osteoblast,
chondrocyte, 
adipocyte, 
endothelial cells, 
neural crest  
stem-like cells

Proliferation rate moderate high high high high high

Heterogeneity + + + + + +

Tissue repair:
regeneration

bone, neuro-
myogenic, dentin-
pulp

bone, neuro-
myogenic, tubular 
dentin

bone, peridontal, 
root formation 

bone, peridontal bone, neuro-dentin-
-pulp, root 
formation

periodontal, 
peripheral nerve 
system
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Table 2. Markers and factors expressed by hDPSCs [5, 34, 35, 39]

Mesenchymal 
markers

Stemness markers Neural markers
Neurotrophic 

factors

Immuno-
modulatory 

factors

Anti-apoptotic 
factors

Angiogenic

CD13 OCT3/4 Nestin NGF PGE2 TNF-α TGF-β

CD29 SSEA4 β-III tubulin GDNF IL-6, IL-8, IL-10 VEGF

CD44 NANOG S100 BDNF TGF-β PDGF

CD146 SOX 2 NF CNTF HGF IGF-1

CD166 STRO 1 GFAP NT3 FGF-β

CD73 Synaptophysin

CD90 MAP-2

CD105

NF – neuorofilament; GFAP – glial fibrillary acidic protein; MAP-2 – micritubule-association protein 2; NGF – nerve growth factor; GDNF – glial cell line-derived neurotrophic factor; BDNF – brain-
-derived neurotrophic factor; CNTF – cytokine ciliary neurotrophic factor; NT3 – neutrophin 3; PGE2 – prostaglandin E2; IL-6, -8, -10 – interleukina 6,8,10; TGF-β – transforming growth factor;  
HGF – hepatocyte growth factor; TNF-α – tumor necrosis factor α; VEGF – vascular endothelial growth factor; PDGF – platelet-derived growth factor; FGF-β – fibroblast growth factor β;  
IGF-1 – insulin-like growth factor

Fig. 1. Multilineage differentiation potential of hDPSCs isolated from adult tooth with fully developed roots. Extracted 3rd lower molar where the crown was 
separated from the root in the using the forceps soflex discs (A). The separated dental pulp tissue from extracted tooth showing vascularization (B). hDPSCs in the 
primary culture 7 days after seeding (C). 12 days after seeding (D). Morphological features of hDPSCs culture at 12th day of culture (E). Osteopontin expression in 
differentiated hDPSCs into osteoblast (G). Collagen type II (F) and aggrecan (H) expression in differentiated hDPSCs into chondrocytes. Fig. 1C, D both images were 
taken using invert microscopy magnification x 200, Figure 1E (hematoxylin–eosin staining, magnification x200), Fig. 1G–H (immunohistochemical staining, EnVision 
technique). The scale bar = 100 µm
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study, the authors observed that during simultane-
ous activation of protein kinas C and cyclic AMP-path-
ways induced neural differentiation of hDPSCs [27]. 
The authors confirmed that hDPSCs differentiated into 
functional neurons by expression of neuronal markers, 
MAP-2 and GFAP [27].

There are reports showing that hDPSCs culture in  
Neurobasal Medium supplemented by EGF, bFGF or B27 
supplement might form bipolar and stellate neuron-like 
morphology, which contains functional neurons con-
firmed by patch-clamp analysis of the voltage-gate Na+ 
an K+ channels [18, 27, 45]. In our preliminary experi-
mental study, we observed that hDPSCs cultured in PSC 
Neural Induction Medium contains the following: Neu-
robasal Medium and Neural Induction Supplement 
(Gibco/Life Technology Cat No A1647801) differentiated 
toward neuron-like cells after 14 days of cultivation. For 
this study, we obtained the approval of the Ethics Com-
mittee of Wroclaw Medical University (decision number 
KB513/2019). Before differentiation, hDPSCs were posi-
tive for CD73, CD105, CD90, CD44, Stro-1 and HLA ABC 
antigens expression and negative for CD45, CD31, and 
HLADR expression. After differentiation, hDPSCs sta-
tus was analyzed by β-III tubulin, nestin, GFAP, NeuN 
expression and evaluation of morphological features 
differentiated hDPSCs. The majority of differentiated 
hDPSCs showed high immunopositivity for nestin and  
β-III tubulin, whereas expression of stem cells markers 
significantly decreased. Morphological features of differ-
entiated hDPSCs resemble neuron-like cells (Fig. 2A–E). 

It was also reported that hDPSCs treated with BDNF, 
NT-4 and GDNF factors, might differentiate into spiral 
ganglion neuron-like cells showing functional neural 
activities [9, 22, 23, 35]. In another study, Gnanasega-
ran et al. [21] observed that hDPSCs differentiate into 
dopaminergic-like cells by multistage inductive proto-
cols, whereas Singh et al. [52] showed that hDPSCs are 
induced by a two-step method to generate dopamin-
ergic neurons: FGF2 first with addition of BDNF on the 
ninth day. Likewise, Chun et al. [11] and Gervois et al. 
[18] reported that hDPSCs could be differentiated into 
dopaminergic neural cells by forming a neurosphere.  
A recent study demonstrated that protocols used for 
hDPSCs differentiation make it possible to obtain a neu-
ronal population of cells which shows increased glu-
tamatergic and GABA-ergic markers and decreased 
dopaminergic and glial markers [10]. Routinely, the 
stage of hDPSCs neuronal differentiation is confirmed 
by the evaluation of such neural markers as GFAP, MAP-
-2, neural nuclei, synapsin I and neuron specific β-III 
tubulin [18, 25, 26, 43, 45]. Moreover, the standardiza-
tion of hDPSCs differentiation protocols according to 
Good Manufacture Practice (GMP) is necessary. Based on 
solid performed experiments showing high neurogenic 
potential of hDPSCs, there seems to be strong evidence 
for using these stem cells for the treatment of central 
nervous system diseases and peripheral nerve injury in 
the future.

DPSCS IN CENTRAL NERVOUS SYSTEM DISEASE THERAPY

An experimental study in animal models has provided 
evidence for the advantages of dental stem cells-based 
therapy in central and peripheral nervous system dis-
eases therapy [5]. A large amount of research has 
revealed the usefulness of hDPSCs in the treatment of 
main central nervous system diseases, including SCI, 
stroke, Parkinson’s and Alzheimer’s diseases [34, 58].

Spinal Cord Injury 

A spinal cord injury leads to partial or complete loss of 
the body’s sensory, motor and automatic function [33]. 
It may lead to the loss of movement, altered sensation, 
loss of bowel or bladder control, pain and difficulty 
in breathing caused by mechanical damage of nerve 
cells and blood vessels disruption or neuroinflamma-
tory responses [15]. A new option for SCI therapy is the 
use of hDPSCs on account of their neural crest lineage 
and differential ability toward neuron-like cells [2, 34, 
48, 58, 63]. Several studies have reported that hDPSCs 
transplantation recovered functionality of SCI [58, 63]. 
The grafted hDPSCs migrated and disseminated in the 
host spinal cord and started to differentiate into func-
tionally neural cells [58, 63]. Neural repair mechanisms 
of hDPSCs in spinal cord injury have been analyzed by 
many investigators [2, 34, 48, 58, 63]. Yang et al. [63] 
found in rat model that hDPSCs after transplantation 
may differentiate into mature neural cells as neuron-like 
and oligodendrocyte-like cells that may promote axonal 
regeneration and tissue repair of spinal cord injuries.  
It was also shown that hDPSCs may reduce the inflamma-
tory response by inhibition of interleukin-β expression 
and promotion of neurite regeneration by inhibition of 
Ras homolog gene family member A (RhoA) and decline 
in the rate of haemorrhage necrosis by reduced sulfony-
lurea receptor1 (SUR-1) [63]. Additionally, hDPSCs may 
protect Purkinje cells in cerebellar layers against 3-AP- 
-induced neurotoxicity and inflammatory response  
[2, 33]. Experimental researches revealed that neurore-
generative mechanisms caused by hDPSCs include inhi-
bition of the neural cells apoptosis in the injured spinal 
cord and promotion axons regeneration by stopping the 
expression of multiple axon growth inhibitors [58, 62, 63]. 

Stroke

Stroke can be manifested as cerebral ischemic due 
to long terms of insufficient blood supply leading to 
brain damage or even death [34, 62]. The therapeu-
tic strategies that can be use are not effective enough 
[62]. The experimental therapy using hDPSCs trans-
plantation into the ischemic areas in Sprague-Dawley 
(SD) rats promoted locomotor functional recovery and 
decreased infarct areas caused by differentiated hDP-
SCs into dopaminergic neurons and secretion of neu-
trophic factors [34, 42, 68]. It has been observed that 
hDPSCs play a protective role for astrocytes by reduc-
ing reactive gliosis and preventing free radical and IL-1β  
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Fig. 2. hDPSCs isolated from dental pulp tissue taken from extracted 3rd molar tooth of 15-year-old patient and cultured in neural inductive medium towards early 
phase of neuron-like cells. hDPSCs before differentiation (A). Differentiated hPDSCs showing neuron-like morphology (B). Morphological features of differentiated 
hDPSCs represent features similar to neuron-like cells, many cells generate connection between themselves (C). Majority of cells showed nestin expression (D). 
Heterogeneous pattern of β-III tubulin expression visible in differentiated cells (E). Fig. 2A, B hDPSCs visualized by inverted microscope. The scale bar = 100µm.  
Fig. 2C (hematoxylin-eosin staining) the scale bar = 50µm, Fig. 2D, E (EnVision technique). The scale bar = 200µm and 100µm respectively Fig. 2D, E
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secretion in in vitro ischemic model [34]. Recently, 
Nito et al. [42] maintained that human DPSCs reduced 
ischemic damage and improved functional recovery in 
a rodent ischemia model, which may relate to the mod-
ulation of neuro-inflammation during the acute phase 
of stroke. Therapeutic potential of intravenous admin-
istration of hDPSCs in a rat stroke model indicated that 
these stem cells may migrate and survive within a cen-
tral nervous system lesion site, inducing differentiation 
of hDPSCs into neuron-like cells and replacement of lost 
neurons or paracrine-mediated supports of endogenous 
neuronal survival [37, 53, 67].

Parkinson’s disease

Parkinson’s disease (PD) is a progressive brain disorder 
caused by the loss of nigrostriatal dopaminergic neurons 
and is manifested by muscle rigidity, bradykinesia, resting 
tremor and postural instability [34, 62]. Chun et al. [11] 
found that human DPSC differentiate under neurogenic 
induction medium present neuron-like cells features and 
possess the ability to synthesize dopamine. hDPSCs may 
restore nigrostriatal dopaminergic neurons functions by 
reducing the secretion of proinflammatory factors (IL- 
-1α, IL-1β, IL-6, IL-8, TNF-α) and by up regulating anti-
inflammatory factors (IL-2, IL-4, TNF-β) [22]. Intrathecal 
delivery of hDPSCs into the 1-methyl-4-phenyl-1,2,3,6-
-tetrahydropyridine- (MPTP-) induced PD model pro-
moted the recovery of behavioral function of cells [51].

Alzheimer’s disease

Alzheimer’s disease (AD) is an age-related chronic 
neuro-degenerative condition characterized by the 
loss of neurons, intracellular neurofibrillary tangles, 
and the deposition of insoluble β-amyloid peptides in 
the brain [34, 58]. The pathological changes in AD asso-
ciated with dementia are the following: memory loss, 
cognitive impairment and linguistic disorders [34, 58]. 
Many types of stem cells have been used in AD therapy 
with different effectiveness [36, 58]. Experimental stud-
ies found that MSCs after transplantation in AD animal 
model showed neural regenerative effects, decreasing 
the number of amyloid plaques in the brain and inhibit-
ing the secretion of inflammatory cytokines [36]. Many 
researchers suggest that hDPSCs have significant prev-
alence in AD therapy than MSCs from other sources  
[58, 59]. The therapeutic possibility of hDPSCs was studied 
using in vitro AD model [58, 59]. It was found that hDPSCs 
express many neutrophic factors, amyloid beta‐degrad-
ing enzymes (NEPs) and anti‐apoptotic factors, which 
have an impact on Alzheimer’s disease therapy [1, 58]. 
Additionally, the experiment using an okadaic acid (OA) 
– induced in vitro AD model showed that hDPSCs could 
promote neural repair and regeneration by restoring the 
cytoskeletal structure and protect microtubule stabil-
ity [58, 59]. Secretion by hDPSCs of various growth fac-
tors contributed to the inhibition of the phosphorylation 
of Tau protein and promoted neural stem cells prolifer-
ation [58]. hDPSCs can be induced to differentiate into  

dopamine expressing neuron-like cells and even as 
exosomes possess the ability to penetrate the blood-
brain barrier and replace neuronal loss [58].

hDPSCs in peripheral nerve system disease therapy

Peripheral nerve injury is mainly caused by traumatic 
accidents or iatrogenic damage, which may result in 
physical disability [34]. Routine clinical treatment, 
including surgical solution, tends to choose the end-to-
end/end-to-side neurorrhaphy to join the parts of dam-
aged nerves [56]. In some cases, the patient has been 
offered nerve graft or active biomaterials, which might 
induce the regeneration of injured peripheral nerves 
[34, 56]. Up to now, autologous nerve grafting is the most 
recommended therapy for peripheral nerve deficits  
[56, 58]. However, this therapy has many disadvantages, 
such as donor nerve availability immunological response 
and morphometric mismatching [14]. Advancements 
in stem cell biological research and tissue engineering 
have given rise to the development of new strategies in 
the therapy and regeneration of peripheral nerve injury  
[16, 30, 47]. It was observed that hDPSCs share a common 
origin with peripheral nerve glial progenitor cells, and 
this feature makes these cells very valuable for periph-
eral nerve repair [47, 55]. Lately, encouraging results 
from different studies indicate that hDPSCs secretomes 
have a reparative and protective influence on axonal 
growth [8, 55]. Evidence from sciatic nerve injury model 
revealed that transplantation of Schwann-like cells 
induced from hDPSCs facilitated the regeneration of  
15 mm sciatic nerve defect [47]. Another study pre-
formed on sciatic nerve injury models showed that hDP-
SCs positive for STRO-1/Kit+/CD34+ are able to promote 
peripheral nerve repair by differentiating into Schwann 
cells precursors and secreting neurotrophic factors [8]. 
A recent study showed that single application of hDPSCs 
immediately after facial nerve crush injury in rat can 
promote a positive local effect on neuro-protection and 
remyelination in 2 weeks of treatment [46]. There are 
many reports in the literature on hDPSCs use in periph-
eral nerve therapy, but the results on hDPSCs effective-
ness in peripheral nerve injury is controversial [17, 24, 
35, 57]. Current results about the effectiveness of hDP-
SCs use in peripheral nerve injury therapy in in vitro and 
in vivo studies are presented in Table 3. As presented 
in Table 3, some studies found that after hDPSCs trans-
plantation these stem cells were able to promote axonal 
growth and recovery of neuron function.

DPSCS COMBINED WITH 3D SCAFFOLDS FOR NEURAL 
REGENERATION IN VIVO MODELS

Many different strategies have been tried to find effica-
cious treatments for the nerve injuries. Currently, there 
are many basic studies showing extensive evidence of 
positive regenerative effects of hDPSCs combining with 
scaffold in neural regeneration [34]. Stem cell-based 
therapies and tissue engineering hold some promise as 
a novel strategy for tissues and nerve regeneration [66].
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Tissue engineering involves three essential components: 
appropriate cells, suitable three-dimensional (3D) scaf-
folds and inductive morphogenic signals to regenerate 
tissues and restore normal organ function [34]. Scaf-
folds are the membranes whose task is to carry the 
cells, induce proper microenvironment, and support 
tissue regeneration. Natural polymers are commonly 
used in their production, such as collagen, chitosan, silk,  
alginate, hyaluronic acid; synthetic materials, such as 
polylactic acid polyglycolic acid, polyethylene glycol; 
ceramic materials, such as tri calcium phosphate, bipha-
sic calcium phosphate, calcium silicate [5, 32]. These 
materials were chosen due to their biocompatibility, 
bioactivity, supporting cells growth and differentiation. 

Moreover, the scaffold should have mechanical proper-
ties according to those of the tissue to be regenerated. 
In addition, the scaffold’s pore architecture should allow 
and promote cell migration, proliferation, as well as dif-
fusion of nutrients, oxygen and wastes [4]. As previously 
mentioned, hDPSCs share many common features with 
neural stem cells. Therefore, the combination of dental 
stem cells with biocompatible material exhibits great 
promise in neural tissue regeneration. 

SCI therapies are mainly based on the use of dental stem 
cells transplanted in rat models in combination with 
different scaffolds. We focused on reports that showed 
the positive impact of DPSCs combined with different  

Table 3. The effect of human DPSCs use in peripheral nerve repair or regeneration both in vivo and in vitro studies

Author
(publication 
year)

Type of 
experiments

Source of stem 
cells

Target tissues Study model Outcome

Carnevale et al. 
2018 [8]

in vivo hDPSCs 
STRO-1+/cKit 
+/CD34+expressing 
P75NTR, nestin, 
SOX-10

Sciatic nerve defect rat model hDPSCs promoted regeneration and 
functional recovery of sciatic nerve defects 
after injury

in vivo hDPSCs 
STRO-1+/cKit 
+/CD34+expressing 
P75NTR, nestin, 
SOX-10

differentiate into neuron-
like cells

In vitro culturing of 
hDPSCs and their 
differentiation to 
neuronal cells

Under appropriate conditions, the cells 
differentiated into neuron-like cells

Kolar et al.  
2017 [28]

in vivo hDPSCs SCAP, DPSCs, 
PDLSC

10 mm nerve gap defect 
in a rat sciatic nerve 

rat sciatic nerve 
injury model

hPDSCs significantly enhanced axon 
regeneration of peripheral nerve after two 
weeks from transplantation

in vivo stimulated human 
SCAP, DPSCs, PDLSC

Differentiated human 
neoroblastoma SH-SY5Y 
cell line

In vitro neurite 
outgrowth assay

Quantification of the neurite outgrowth 
showed that unstimulated and stimulated 
human DPSCs and PDLSC increased both the 
percentage of cells producing neurites and 
the total neurite outgrowth length

Sanen et al.  
2017 [47]

in vivo SCs derived from 
differentiated 
hDPSCs

15 mm rat sciatic nerve 
defects

Rat sciatic nerve 
injury model

Immunohistochemical and ultrastructural 
analysis revealed in-growing neurites, 
myelinated nerve fibres and blood vessels 
along the construct

in vivo SCs derived from 
differentiated 
hDPSCs

Human microvascular 
endothelial cell line 
(HMEC-1)

Alamar Blue cell 
proliferation assay; 
Transwell migration 
assay; Tube 
formation assay

The endothelial cell line HMEC-1 had 
proliferated significantly more in the 
presence of conditioned medium from 
hDPSCs and differentiated hDPSCs compared 
with those in control medium

Hei et al.  
2017 [24]

in vivo Schwann-like cells 
derived from hDPSCs

3 mm-wide crush injury 
was inflicted at a distance 
of approximately 10 mm 
from the mental foramen

Male Sprague-
Dawley rats crush-
injury site

Schwann-like cells, hDPSCs improved 
peripheral nerve regeneration

Ullah et al.  
2017 [57]

in vivo differentiated 
neuronal cells from 
hDPSCs

5 mm gap sciatic nerve 
transection

rat model Transplantation of the undifferentiated 
hDPSCs could exhibit sufficient peripheral 
nerve regeneration potential

Geng et al.  
2017 [17]

in vivo hDPSCs Differentiation of hDPSCs in vitro model Resveratrol induced hDPSCs differentiation 
into neuroprogenitor cells
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